Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex
نویسندگان
چکیده
During cerebral cortex development, pyramidal neurons migrate through the intermediate zone and integrate into the cortical plate. These neurons undergo the multipolar-bipolar transition to initiate radial migration. While perturbation of this polarity acquisition leads to cortical malformations, how this process is initiated and regulated is largely unknown. Here we report that the specific upregulation of the Rap1 guanine nucleotide exchange factor, RapGEF2, in migrating neurons corresponds to the timing of this polarity transition. In utero electroporation and live-imaging studies reveal that RapGEF2 acts on the multipolar-bipolar transition during neuronal migration via a Rap1/N-cadherin pathway. Importantly, activation of RapGEF2 is controlled via phosphorylation by a serine/threonine kinase Cdk5, whose activity is largely restricted to the radial migration zone. Thus, the specific expression and Cdk5-dependent phosphorylation of RapGEF2 during multipolar-bipolar transition within the intermediate zone are essential for proper neuronal migration and wiring of the cerebral cortex.
منابع مشابه
Cdk5-dependent Mst3 phosphorylation and activity regulate neuronal migration through RhoA inhibition.
The radial migration of newborn neurons is critical for the lamination of the cerebral cortex. Proper neuronal migration requires precise and rapid reorganization of the actin and microtubule cytoskeleton. However, the underlying signaling mechanisms controlling cytoskeletal reorganization are not well understood. Here, we show that Mst3, a serine/threonine kinase highly expressed in the develo...
متن کاملNeurabin-I is phosphorylated by Cdk5: implications for neuronal morphogenesis and cortical migration.
The correct morphology and migration of neurons, which is essential for the normal development of the nervous system, is enabled by the regulation of their cytoskeletal elements. We reveal that Neurabin-I, a neuronal-specific F-actin-binding protein, has an essential function in the developing forebrain. We show that gain and loss of Neurabin-I expression affect neuronal morphology, neurite out...
متن کاملCyclin-dependent kinase 5 permits efficient cytoskeletal remodeling--a hypothesis on neuronal migration.
Migration of neurons to their proper position underlies mammalian brain development. To remain on the proper path, a migrating neuron needs to detect various external signals and respond by efficiently remodeling its cytoskeleton. Cyclin-dependent kinase 5 (Cdk5), a member of the cyclin-dependent kinase family, regulates neuronal migration by phosphorylating a number of intracellular substrates...
متن کاملCdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex.
The mammalian cerebral cortex consists of six layers that are generated via coordinated neuronal migration during the embryonic period. Recent studies identified specific phases of radial migration of cortical neurons. After the final division, neurons transform from a multipolar to a bipolar shape within the subventricular zone-intermediate zone (SVZ-IZ) and then migrate along radial glial fib...
متن کاملFyn and Cdk5 Mediate Semaphorin-3A Signaling, Which Is Involved in Regulation of Dendrite Orientation in Cerebral Cortex
Semaphorin-3A (Sema3A), a member of class 3 semaphorins, regulates axon and dendrite guidance in the nervous system. How Sema3A and its receptors plexin-As and neuropilins regulate neuronal guidance is unknown. We observed that in fyn- and cdk5-deficient mice, Sema3A-induced growth cone collapse responses were attenuated compared to their heterologous controls. Cdk5 is associated with plexin-A2...
متن کامل